The extreme COOH terminus of the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-373 and activation of E2F.

نویسندگان

  • Laura L Gorges
  • Nathan H Lents
  • Joseph J Baldassare
چکیده

The retinoblastoma protein pRb plays a pivotal role in G(1)- to S-phase cell cycle progression and is among the most frequently mutated gene products in human cancer. Although much focus has been placed on understanding how the A/B pocket and COOH-terminal domain of pRb cooperate to relieve transcriptional repression of E2F-responsive genes, comparatively little emphasis has been placed on the function of the NH(2)-terminal region of pRb and the interaction of the multiple domains of pRb in the full-length context. Using "reverse mutational analysis" of Rb(DeltaCDK) (a dominantly active repressive allele of Rb), we have previously shown that restoration of Thr-373 is sufficient to render Rb(DeltaCDK) sensitive to inactivation via cyclin-CDK phosphorylation. This suggests that the NH(2)-terminal region plays a more critical role in pRb regulation than previously thought. In the present study, we have expanded this analysis to include additional residues in the NH(2)-terminal region of pRb and further establish that the mechanism of pRb inactivation by Thr-373 phosphorylation is through the dissociation of E2F. Most surprisingly, we further have found that removal of the COOH-terminal domain of either RbDeltaCDK(+T373) or wild-type pRb yields a functional allele that cannot be inactivated by phosphorylation and is repressive of E2F activation and S-phase entry. Our data demonstrate a novel function for the NH(2)-terminal domain of pRb and the necessity for cooperation of multiple domains for proper pRb regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage.

The retinoblastoma tumor suppressor protein (pRB) plays a critical role in the control of cell proliferation and in the DNA damage checkpoints. pRB inhibits cell cycle progression through interactions with the E2F family of transcription factors. Here, we report that DNA damage induced not only the dephosphorylation of pRB at Cdk phosphorylation sites and the binding of pRB to E2F-1, but also t...

متن کامل

Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein.

p21Sdi1/WAF1/Cip1 inhibits cyclin-dependent protein kinases and cell proliferation. p21 is presumed to inhibit growth by preventing the phosphorylation of growth-regulatory proteins, including the retinoblastoma tumor suppressor protein (pRb). The ultimate effector(s) of p21 growth inhibition, however, is largely a matter of conjecture. We show that p21 inhibits the activity of E2F, an essentia...

متن کامل

Control of retinoblastoma protein-independent hematopoietic cell cycle by the pRB-related p130.

The retinoblastoma tumor suppressor protein (pRB) is a potent inhibitor of mammalian cell growth and the functional inactivation of pRB is widely presumed to be essential for progression of the cell cycle from G1 phase. In this work, the generality of pRB-based cell cycle control in mammalian cells was addressed by conditionally expressing pRB in cytokine-dependent hematopoietic cells. We show ...

متن کامل

Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth.

The retinoblastoma tumor suppressor protein (pRB) can inhibit cell cycle progression and promote differentiation. pRB interacts with a variety of transcription factors, including members of the E2F and C-EBP protein families and MyoD, and can either repress or activate transcription depending on the promoter under study. These biological and biochemical activities of pRB have been mapped previo...

متن کامل

pRB, p107 and the regulation of the E2F transcription factor.

Small DNA tumor viruses, such as adenovirus, encode proteins that deregulate the cell cycle. These proteins are potent transforming agents when tested in standard oncogenic assays. For adenovirus the best characterized viral oncoproteins are the early region 1A (E1A) products. Mutational studies have shown that E1A's oncogenic ability is determined primarily by its ability to bind to certain ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 295 5  شماره 

صفحات  -

تاریخ انتشار 2008